Рекордное погружение в марианскую впадину. Погружение на дно марианской впадины. Ящер пытался разгрызть батискаф как орех

Марианская впадина - самое глубокое место в мировом океане. Она расположена между Японией и Папуа-Новой Гвинеей, неподалеку от острова Гуам. Ее максимальная глубина составляет около 11 тысяч метров (это место Марианской впадины называется «Бездна Челленджера»).

Марианская впадина имеет вытянутый вид, а в вертикальном разрезе представляет собой V-образный каньон, сужающийся ко дну. Дно впадины - плоское, шириной несколько километров.

Начало исследований

Первые исследования Марианской впадины начались еще в 19 веке, когда команде парусника «Челленджер» удалось замерить ее глубину с помощью глубоководного лота. По результатам измерений глубина впадины составила чуть больше восьми километров. Через сто лет исследовательское судно с таким же названием провело повторные замеры глубины впадины с помощью эхолота. Максимальная глубина составила почти одиннадцать километров.

Погружения с участием людей

Погрузиться на дно Марианской впадины могут только ученые в специальном исследовательском аппарате. Давление на дне впадины огромное - больше ста мегапаскалей. Этого достаточно, чтобы раздавить обычный батискаф, как яичную скорлупу. За всю историю человечества на дно Марианской впадины удалось погрузиться лишь троим исследователям - лейтенанту армии США Дону Уолшу, ученому Жаку Пикару и кинорежиссеру Джеймсу Кэмерону.

Первую попытку погружения на дно Марианской впадины предприняли Жак Пикар и Дон Уолш. На специально сконструированном батискафе они погрузились на глубину 10918 метров. К удивлению исследователей, на дне впадины они увидели рыб, внешним видом напоминающих камбалу. Как им удается существовать в условиях такого огромного давления - до сих пор остается загадкой.

Третьим и на данный момент последним человеком, которому удалось опуститься на дно Марианской впадины, стал режиссер Джеймс Кэмерон. Он сделал это в одиночку, спустившись в самую глубокую точку впадины в глубоководном аппарате Deepsea Challenger. Это знаменательное событие произошло в 2012 года. Кэмерон опустился в «Бездну Челленджера», взял пробы грунта и заснял процесс погружения на . На основе видеоматериалов, снятых Джеймсом Кэмероном, канал National Geographic выпустил фильм.

Погружения без участия людей

Помимо людей, в Марианскую впадину опускались и «беспилотные» исследовательские аппараты. В 1995 году дно Марианской впадины изучил японский зонд «Кайко», а в 2009 году на дно Марианского желоба опустился аппарат Nereus.

11°22" СЕВЕРНОЙ ШИРОТЫ, 142°35" ВОСТОЧНОЙ ДОЛГОТЫ

ЮГО-ЗАПАД ГУАМА, ЗАПАДНАЯ ЧАСТЬ ТИХОГО ОКЕАНА

Утро, еще не рассвело. Мой батискаф Deepsea Challenger бросает из стороны в сторону в гигантских волнах Тихого океана. С полуночи мы все уже на ногах и после пары часов беспокойного сна начинаем готовить оборудование к погружению. Сегодня условия для погружения не самые благоприятные.

Кабина пилота - стальной шар диаметром 109 сантиметров. Я упакован в нее, как грецкий орех в скорлупу. Сижу, согнув колени и упираясь головой в потолок. Я вынужден буду сохранять это положение в течение следующих восьми часов. Мои голые пятки упираются в 180-килограммовую крышку люка, задраенную снаружи. Меня часто спрашивают, не бывает ли у меня в батискафе приступов клаустрофобии. Отнюдь, мне здесь удобно и приятно. Перед глазами у меня три видеомонитора, передающих изображение от внешних камер, и сенсорная панель управления.

Ярко-зеленый батискаф завис в волнах, как вертикальная торпеда, нацеленная в центр Земли. Я поворачиваю свою 3D-камеру, закрепленную на конце 1,8-метрового гидравлического манипулятора, чтобы увидеть, что происходит над аппаратом. Водолазы приготовились к отсоединению батискафа от плавучего баллона, удерживающего аппарат на поверхности воды.

Я долго ждал этого момента и в последние несколько недель много думал о том, что будет, если все пойдет не по плану. Но сейчас я на удивление спокоен. Ни тревог, ни опасений – лишь решимость сделать то, что мы задумали, и детское нетерпение. Я внутри батискафа... Я принимал участие в проектировании этого аппарата и досконально знаю все его возможности и слабые места. После недель тренировок моя рука уже безошибочно тянется к нужным переключателям.

Пора начинать. Я делаю глубокий вдох и включаю микрофон: "ОК, готов к погружению. Отпускай, отпускай, отпускай!"

Главный водолаз дергает трос и отсоединяет плавучий баллон. Батискаф камнем падает вниз, и уже через несколько секунд водолазы кажутся игрушечными фигурками далеко наверху. Они стремительно уменьшаются и исчезают; остается лишь темнота. Я бросаю взгляд на приборы и вижу, что опускаюсь со скоростью около 150 метров в минуту. После мечтаний длиной в жизнь, семи лет проектирования батискафа, трудных месяцев его строительства, напряжения и волнения я наконец приближаюсь к впадине Челленджер, самой глубокой точке Мирового океана.

05:50, ГЛУБИНА 3810 МЕТРОВ, СКОРОСТЬ ПОГРУЖЕНИЯ 1,8 М/C

Всего через 35 минут я прохожу глубину, на которой лежит "Титаник", в четыре раза быстрее, чем на российском батискафе "Мир", который мы в 1995-м использовали для съемок остатков знаменитого судна. В то время мне казалось, что "Титаник" лежит на невообразимой глубине и отправиться к нему - примерно как полететь на Луну.

Еще через 15 минут я прохожу 4760 метров, глубину, на которой лежит линкор "Бисмарк". Когда в 2002 году я исследовал остатки этого корабля, лампа прожектора взорвалась прямо над обшивкой нашего батискафа. Тогда я впервые стал свидетелем подводного взрыва. Температура воды снаружи опустилась с тридцати градусов Цельсия до двух. Моя кабина пилота стремительно остывает, ее стенки покрылись большими каплями конденсата. Голые ноги, упирающиеся в металлическую крышку люка, начинают замерзать; на то, чтобы надеть шерстяные носки и водонепроницаемые ботинки, в этом тесном пространстве у меня уходит несколько минут. Затем я натягиваю шерстяную шапку, чтобы закрыть голову от холодной влажной стали, давящей сверху. В окружающей меня темноте единственные намеки на движение - частички планктона, мелькающие в свете прожектора, как будто я еду на машине в снежную бурю.

06:33, ГЛУБИНА 7070 МЕТРОВ, СКОРОСТЬ ПОГРУЖЕНИЯ 1,4 М/C

Я только что прошел максимальную глубину, на которую когда-либо погружался человек, - уровень китайского "Чжаолонга". Несколько минут назад я миновал глубины, на которые опускались русский "Мир", французский "Наутилус" и японский "Шинкаи" - шесть с половиной тысяч метров.

06:46, ГЛУБИНА 8230 МЕТРОВ, СКОРОСТЬ ПОГРУЖЕНИЯ 1,3 М/C

Я только что побил свой собственный рекорд одиночного погружения, поставленный три недели назад в Новобританском желобе, рядом с Папуа-Новой Гвинеей. Трудно поверить, что мне нужно пройти еще 2740 метров. Я миновал все пункты на своей контрольной таблице спусков, и теперь, во время этого долгого и тихого падения, мне остается только наблюдать, как увеличиваются цифры на индикаторе глубины. Единственный звук, который я слышу, - редкое шипение кислородного соленоида. Если батискаф даст течь, вода выстрелит с силой лазерного луча, разрезая все на своем пути, включая толстые стальные стенки моей кабины и меня...

07:43, ГЛУБИНА 10 850 МЕТРОВ, СКОРОСТЬ ПОГРУЖЕНИЯ 0,26 М/C

Прошел еще час. На последних 2740 метрах батискаф замедлил ход. Я сбросил несколько металлических пластинок-балластов, удерживаемых на корпусе электромагнитами, чтобы выровнять аппарат. Я опускаюсь очень медленно, под действием одного лишь давления. Судя по показаниям альтиметра, до дна еще 46 метров. Все камеры работают, прожекторы направлены вниз. Я вцепился в рычаги управления и вглядываюсь в черные мониторы. 30 метров… 27… 24… 21… 18… Наконец я вижу свет, отражающийся от дна. Само дно выглядит гладким, как яичная скорлупа, никаких неровностей, ничего, что помогло бы определить расстояние. Я слегка торможу с помощью вертикальных рычагов. Через пять секунд батискаф ударяется о дно.

Я пока не уверен, что это твердая поверхность. Вода прозрачна как стекло. Я смотрю далеко вперед - ничего. Дно абсолютно ровное. Совершив более 80 погружений, я видел разное морское дно. Но такого - никогда!

07:46, ГЛУБИНА 10 898,5 МЕТРА

Я направляю батискаф еще ниже. С внешней камеры, закрепленной на гидравлическом манипуляторе, я вижу, как опора батискафа проваливается еще сантиметров на 10, прежде чем он останавливается. Спуск занял два с половиной часа. Сверху надо мной раздается голос: "Deepsea Challenger, это суша. Проверка связи". Голос слышится слабо, но очень отчетливо. А мы-то беспокоились, что на такой глубине голосовая связь работать не будет!

Я включаю микрофон. "Суша, это Deepsea Challenger. Я на дне. Глубина - 10898 метров, системы жизнеобеспечения работают нормально, все в порядке".

Проходит несколько секунд, прежде чем мои слова со скоростью звука поднимаются вверх из подводного мира, и до меня доходит ответ: "Повторите". Большинство тех, кто строил батискаф, сейчас в диспетчерской, и пока еще они не до конца осознают, что мы сделали... Десять тысяч восемьсот девяносто восемь с половиной…

Но сейчас мне нужно забыть о первом успехе и приниматься за работу. Мы запланировали, что я проведу на дне пять часов, и нужно еще многое успеть. Я поворачиваю батискаф и через камеры пытаюсь оглядеть мир, в который прибыл. Дно плоское. Я завожу моторы, открываю внешний люк научного отделения и разворачиваю манипулятор, чтобы взять первую пробу осадка со дна. Если через десять минут все оборудование выйдет из строя, по крайней мере я привезу образцы для ученых.

Проба ила на борту. Я улучаю момент, чтобы сфотографировать крупным планом часы Rolex Deepsea швейцарской фирмы - партнера нашей экспедиции. Закрепленные на рычаге манипулятора, они все еще тикают, несмотря на давление в 1147 килограммов на квадратный сантиметр. В 1960 году в рамках проекта лейтенант военно-воздушных сил США Дон Уолш и швейцарский океанолог Жак Пикар в массивном батискафе "Триест" опустились на ту же глубину, это единственные два человека, которым когда-либо удалось сделать то, что мне сегодня. Они тоже взяли с собой специально изготовленный для экспедиции Rolex, и он отлично выдержал давление.

Но не все работает столь безупречно. Через несколько мгновений после того, как я сделал снимок часов, взгляд мой падает на плывущие желтые масляные шарики. Гидравлическая система протекает. Спустя несколько минут я теряю управление краном-манипулятором для сбора образцов и люком научного отсека. Я больше не могу забирать пробы, но камеры пока работают, и я продолжаю исследование.

09:10, ГЛУБИНА 10 897 МЕТРОВ, СКОРОСТЬ 0,26 М/С

С помощью толкателей я двигаюсь на север через ровную плоскость, запруженную осадочными отложениями. Поверхность напоминает пустую автостоянку, на которой только что выпал снег. Я не вижу на дне признаков бурной жизни, лишь время от времени мимо проплывают редкие амфиподы, крошечные, как снежинки. Скоро я должен наткнуться на "стену" впадины. Из наших гидролокационных карт я знаю, что это не совсем стена, скорее - довольно пологий холм.

Пока я наблюдаю все через камеры. Затем у меня уходит пара минут на то, чтобы немного отодвинуть оборудование и принять положение, в котором я смогу смотреть прямо в иллюминатор. Это место раньше никто и никогда не видел: хотя Уолш и Пикар достигли такой же глубины, они погружались в 37 километрах к западу от впадины Челленджер, в точку, которая впоследствии была названа впадиной Витязь-1.

Все другие поверхности морского дна, на которых мне довелось побывать, даже на глубине 8230 метров в Новобританском желобе, хранили следы червяков и морских огурцов. Здесь же ни единого признака развитых - не примитивных - форм жизни. Я понимаю, что на самом деле поверхность впадины не безжизненна, в пробе, которую я взял, мы почти наверняка обнаружим новые виды бактерий. Но меня не покидает чувство, что я спустился на границу самой жизни.

Я чувствую себя ничтожно малым перед бесконечностью всего того, что нам не известно. Я понимаю, как мала свеча, которую я зажег здесь за эти несколько минут, и как много еще остается сделать для познания нашего огромного мира.

10:25, ГЛУБИНА 10 877 МЕТРОВ, СКОРОСТЬ 0,26 М/С

Я нашел северный склон и осторожно поднимаюсь по его волнистому гребню. Я почти в полутора километрах к северу от места своей посадки. Пока что никаких обнажений горных пород. В путешествии по плоскому дну впадины я нашел и сфотографировал два возможных признака жизни: лежащий на дне студенистый шарик размером меньше детского кулачка и темную полосу в полтора метра длиной, которая может оказаться домом какого-нибудь подземного червя. Обе находки загадочны и не похожи ни на что из того, что мне приходилось видеть во время прежних погружений. Я сделал фотографии в высоком разрешении и предоставлю ученым возможность поломать над ними голову.

Но тем временем пара батарей, питающих батискаф, разряжается, неисправен компас, а гидролокатор и вовсе не работает. К тому же я лишился двух из трех двигателей по правому борту, поэтому батискаф движется медленно и управлять им стало сложнее. Все это последствия сильнейшего давления. Я тороплюсь, понимая, что времени осталось мало, но надеюсь добраться до крутых обрывов - что-то подобное я наблюдал в Новобританском желобе: там их населяла популяция живых организмов, совершенно отличных от тех, что обитали на пологой поверхности впадины.

Внезапно я чувствую, что батискаф клонится вправо, и проверяю, что происходит с двигателями. Отказал последний двигатель правого борта. Теперь я не могу собирать образцы и делать снимки, поэтому оставаться здесь бесполезно. Я провел на дне менее трех часов. Неохотно я вызываю сушу и говорю команде, что готов к подъему.

10:30, ГЛУБИНА 10 877 МЕТРОВ, СКОРОСТЬ 3 М/C

Всегда чуть медлишь перед тем, как нажать на переключатель, отвечающий за сброс балласта. Если грузы не упадут, ты не вернешься домой. Я несколько лет проектировал механизм высвобождения грузов, и инженеры, которые построили и протестировали его, поработали основательно: пожалуй, это самая надежная система во всем батискафе.

Щелчок. Раздается знакомое "бух", как только два 243-килограммовых груза соскальзывают по колее и падают на дно, батискаф кренится - и дно тут же пропадает в полной темноте.

Я чувствую, как батискаф сопротивляется и раскачивается на пути вверх. Я двигаюсь со скоростью более трех метров в секунду - быстрее не поднимался еще ни один батискаф, я буду на поверхности максимум через полтора часа. Я представляю, как давление выталкивает батискаф, словно огромный питон, который не смог раздавить добычу и теперь медленно ослабляет хватку. Цифры на индикаторе глубины уменьшаются, и мне становится легче.

Через восемь месяцев, после того как Deepsea Challenger завершил свою экспедицию, команда объявила о предварительных результатах научных исследований. Анализ фотографий и проб, собранных во время погружения в Марианский желоб, выявил различные формы жизни. Со дна впадины Челленджер было поднято 20 тысяч микроорганизмов. Среди собранной фауны были изоподы и шесть видов креветкообразных амфиподов. Один амфипод из впадины Челленджер производит химическое соединение, которое в данный момент тестируют как лекарство от болезни Альцгеймера. Дальнейший анализ данных экспедиции может пролить свет на теорию адаптации организмов к высокому давлению.

Еще одним сюрпризом стал перерасчет глубины погружения Кэмерона. Точные вычисления показывают, что батискаф достиг глубины 10 908 метров, а не 10 898, – глубины, зафиксированной прибором во время погружения. Для сравнения: "Триест" в 1960 году достиг глубины 10 912 метров.

National Geographic

И названной в честь английского судна «Челленджер», с которого в 1951 году были получены первые данные о ней. Погружение продолжалось 4 ч 48 мин и завершилось на отметке 10911 м относительно уровня моря (mean sea level). На этой страшной глубине, где чудовищное давление в 108,6 МПа (что более чем в 1100 раз больше нормального атмосферного) сплющивает все живое, исследователи сделали важнейшее океанологическое открытие: увидели, как мимо иллюминатора проплывают две 30-сантиметровые рыбки, похожие на камбалу. До этого считалось, что на глубинах, превышающих 6000 м, никакой жизни не существует.

Пробыв на дне около двадцати минут, Trieste начал подниматься наверх. Подъем занял 3 ч 15 мин. На поверхности врачи не зафиксировали каких бы то ни было отклонений состояния здоровья двух смельчаков от нормы.

Таким образом был установлен абсолютный рекорд глубины погружения, превзойти который невозможно даже теоретически. Пикар и Уолш были единственными людьми, побывавшими на дне бездны Челленджера. Все последующие погружения к самой глубокой точке мирового океана с исследовательскими целями совершали уже беспилотные батискафы-роботы. Но и их было не так много, поскольку «посещение» бездны Челленджера — дело и трудоемкое, и дорогостоящее. В 90-е годы три погружения совершил японский аппарат Kaiko , управлявшийся дистанционно с «материнского» судна по волоконно-оптическому кабелю. Однако в 2003 году при исследовании другой части океана во время шторма оборвался буксировочный стальной трос, и робот был утерян.

На смену Kaiko пришел американский беспилотный батискаф Nereus , конструктивно представляющий собой катамаран, способный перемещаться на глубине со скоростью 3 узлов. Им управляют посредством волоконно-оптического кабеля. Однако возможно и радиоуправление. Первое погружение в бездну Nereus совершил 31 мая прошлого года, подняв со дна пробу грунта, в котором была обнаружена органическая жизнь. На нынешний момент это единственный в мире аппарат, способный достигать бездны Челленджера.

С небес в пучину морскую

Всякое рекордное техническое достижение имеет длительную предысторию. В данном случае сюжет уложился лишь в два человеческих поколения. Все началось с Огюста Пикара (Auguste Piccard , 1884-1962), швейцарского физика и изобретателя, отца одного из покорителей бездны Челленджера. Будучи профессором университета в Брюсселе , в 20-е годы прошлого века он занимался исследованиями в области геофизики и геохимии, изучал радиоактивные свойства урана . В 1930 году, «оторвавшись от почвы», переключился на исследование верхних слоев атмосферы , для чего сконструировал уникальный для своего времени стратостат . Его герметичная гондола имела сферическую форму и позволяла экипажу совершать полеты чуть ли ни в безвоздушном пространстве.

Стратостат, построенный при поддержке Бельгийского национального фонда научных исследований (Fonds National de la Recherche Scientifique, FNRS), получил название FNRS-1. В мае 1931 года Огюст Пикар вместе с ассистентом Паулем Кипфером (Paul Kipfer) совершил первый в истории полет в стратосферу, достигнув высоты 15 785 м. Штурм воздушного океана на FNRS-1 продолжался до середины 30-х годов, а рекорд высоты подъема был доведен до 23 000 м.

А в 1937 году Пикар, вдохновившись идеей погружения в пучины морские, начал разрабатывать принципиально новый тип подводного плавcредства, получившего название батискафа. Дело в том, что субмарины в надводном положении имеют «положительную» плавучесть, батискаф — всегда только «отрицательную». Подводная лодка погружается за счет того, что открываются клапаны вентиляции в балластных системах, воздух замещается забортной водой, и положительная плавучесть становится отрицательной. Для перемещения по вертикали рулями создается дифферент (наклон продольной оси относительно горизонтали), а воздух в балластных системах либо стравливается, давая место воде, либо расширяется, выдавливая воду наружу.

Батискаф же плавает по принципу утюга. В надводном состоянии его удерживает находящийся над гондолой с экипажем громадный поплавок, заполненный бензином. Поплавок имеет и еще одну важную функцию: в подводном положении он стабилизирует батискаф по вертикали, предотвращая раскачивание и переворачивание. Когда из поплавка начинают медленно выпускать бензин, который замещается водой, батискаф начинает погружение. С этого момента у аппарата только один путь — вниз, на дно. При этом, естественно, возможно и перемещение в горизонтальном направлении при помощи приводимых в движение двигателем гребных винтов.

Для того чтобы подняться на поверхность, в батискафе предусмотрен металлический балласт, который может быть дробью, пластинками или болванками. Постепенно освобождаясь от «избыточного веса», аппарат поднимается. Металлический балласт удерживается электромагнитами, так что если с системой энергоснабжения что-то случается, то батискаф сразу, словно стартующий в небо аэростат, «взмывает» вверх.

С конструированием своего первого океанического детища, которое было названо FNRS-2, Пикар провозился до 1946 года, что было связано с бушевавшей в Европе мировой войной. А спустя два года он был изготовлен. FNRS-2, рассчитанный на экипаж из двух человек, весил 10 т. Емкость сравнительно компактного поплавка составляла 30 м³, а диаметр гондолы — 2,1 м. Расчетная глубина погружения составляла 4000 м.

Ввиду принципиальной новизны аппарата и опасения за прочность гондолы довольно долго проводились его испытания в Дакаре без экипажа на борту. Вначале батискаф опустился на 25 м. А через год глубину погружения довели до 1380 м. Однако на этом все и завершилось: во время буксировки батискафа тросом был серьезно поврежден поплавок. Предстояло не только его отремонтировать, но и продолжить доработки по результатам испытаний. Однако Бельгийский национальный фонд научных исследований отказался от дальнейшего финансирования проекта. И в 1950 году FNRS-2 передали французскому ВМФ. Французские инженеры в итоге добились, чтобы в 1954 году модернизированный батискаф, получивший новое имя FNRS-3, погрузился на 4176 м с экипажем на борту.

Между тем Огюст вместе с подросшим сыном Жаком, успевшим поучиться в Женевском (Université de Genève, UNIGE) и Базельском (Die Universität Basel) университетах, в 1952 году приступил к созданию батискафа-рекордсмена Trieste. Аппарат был назван в честь итальянского города Триеста, на верфи которого он был произведен в 1953 году. Столь короткие сроки объяснялись тем, что «Триест» не имел принципиальных конструктивных отличий от FNRS-2. Разве что были увеличены габариты прототипа да усилена конструкция гондолы.

С 1953 по 1957 год Trieste, пилотом которого стал молодой Пикар, совершил несколько погружений в Средиземном море, достигнув глубины 3150 м. Причем в первых из них принимал участие и отец, которому тогда было уже 69 лет.

В 1958 году батискаф купили ВМС США. После его доработки на заводе Круппа в Германии , где гондола была упрочнена высококачественной легированной сталью, Trieste обрел способность погружаться на глубину до 13 000 м. Именно на этой конструкции в 1960 году и был установлен непобиваемый рекорд.

Одним из достижений этого погружения, благотворно повлиявшим на экологическое будущее планеты, стал отказ ядерных держав от захоронения радиоактивных отходов на дне Марианской впадины. Дело в том, что Жак Пикар экспериментально опроверг бытовавшее в то время мнение о том, что на глубинах свыше 6000 м не происходит восходящего перемещения водных масс.

Trieste в его последнем, «чемпионском» варианте имел поплавок длиной 15 м и объемом 85 м³. Толщина стенок поплавка, укрепленных внутри шпангоутами, составляла всего 5 мм. Толщина стенок гондолы диаметром 2,16 м равнялась 127 мм. Вес гондолы на воздухе составлял 13 тc, а в воде (при нормальных условиях) — 8 тc. Балласт из металлической дроби, которая порционно сбрасывалась электромагнитами для всплытия, обладал массой в 9 т. Имелся один иллюминатор для наблюдений, изготовленный из оргстекла, а также прожектор с кварцевой дуговой лампой.

Батискаф имел автономную систему регенерации воздуха, которая используется на космических аппаратах. При этом имелась возможность голосового общения с поверхностью при помощи гидроакустической системы связи.

В дальнейшем при помощи Trieste в Атлантическом океане безрезультатно пытались найти пропавшую субмарину Thresher, а также проводили обследование различных участков океанского дна. В 1963 году легендарный батискаф был разобран и помещен в Морском музее США в Вашингтоне .

Нынешний наследник легендарного Trieste — батискаф Nereus — создан в американском Вудхолсовском океанографическом институте (Woods Hole Oceanographic Institution). Это катамаран, имеющий размеры 4,25 м × 2,3 м и весящий менее трех тонн, плавучесть которого обеспечивают полторы тысячи полых сфер из особо прочной керамики. При помощи двух винтов он может перемещаться под водой со скоростью трех узов на протяжении десяти часов, что обеспечивается батареей из 4 тыс. аккумуляторов общей емкостью 15 кВт-час. Полезная нагрузка составляет 25 кг. К ней относятся манипулятор, сонар, камеры, приборы для химического анализа и контейнеры для забора проб.

Аппарат уходит на дно со скоростью утюга и на заданной глубине отстреливает часть балласта, что обеспечивает его плавучесть. Для подъема отстреливается остаток балласта.

Весь остальной мировой парк батискафов, куда входят как пилотируемые машины, так и роботизированные, не способен опуститься глубже 6500 м. Что предопределено прагматическими соображениями: более глубоководная часть мирового океана составляет лишь 12% его общей площади.

Наш ответ Чемберлену

В Советском Союзе проектирование глубоководных батискафов началось в конце 60-х годов. И предназначались они для ВМФ как спасательные аппараты, применяющиеся для ликвидации аварий субмарин. Батискафы классического поплавкового типа серии АС со стравливанием в воду бензина преодолели двухкилометровый рубеж лишь в 1975 году. Через четыре года появился пилотируемый супергигант АС-7 водоизмещением 950 т. За одно погружение он пожирал 240 т бензина, в связи с чем «материнский» корабль сопровождал танкер. И лишь в июле 1987 года он опустился чуть ниже глубины в 6035 м, заданной в ТЗ. Через год он разбился, и его ремонтировали два года. А в конце 90-х АС-7 затонул в бухте Раковая на Дальнем Востоке .

Всего было выпущено около тридцати батискафов серии АС. Сейчас «в живых» осталось около пяти, и все они не «ныряют» глубже 1000 м. Один из них — АС-28, разработанный в КБ «Лазурит» в 1987 году. Им управляет экипаж из четырех человек, конструкция предполагает прием на борт до двадцати спасаемых. В 2005 году АС-28 потерпел аварию, спасти спасательный аппарат удалось при помощи британского подводного робота.

Мирные исследования морских пучин, как в научных интересах, так и по заказу рыбопромыслового ведомства, до середины 80-х годов осуществлялись на глубинах менее 800 м. И лишь в 1987 году в результате совместной разработки АН СССР и финской компании Lokomo отечественные ученые получили два полноценных глубоководных батискафа «Мир-1» и «Мир-2» . Каждый из них на испытаниях преодолел отметку 6100 м. Батискафы базируются на научно-исследовательском судне «Академик Мстислав Келдыш».

Длина аппаратов — 7,8 м, ширина — 3,8 м, высота — 3 м, сухой вес — 18,6 т. Корпус изготовлен из высокопрочной легированной никелевой стали, имеющей предел текучести вдвое больший, чем у титана. Аппаратом управляет экипаж из 3 человек. Принцип погружения и всплытия «Мира» такой же, как и у субмарины, использующей систему водных балластных цистерн.

Электродвигатели получают питание от аккумуляторов емкостью 100 кВт-час и позволяют развивать под водой скорость 5 узлов. Продолжительность автономной работы — 80 часов. На борту установлена исследовательская аппаратура. Связь с поверхностью поддерживается как через волоконно-оптический кабель, так и с помощью гидроакустической аппаратуры.

В советский период, до 1991 года, «Академик Келдыш» принял участие в тридцати пяти экспедициях в Атлантический, Тихий и Индийский океаны. Затем активность исследовательской деятельности резко снизилась. Более того, «Миры» стали выступать в не совсем свойственных им ролях. При их участии сняли три голливудских фильма, один из которых — «Титаник» (как писали отечественные СМИ, эти съемки принесли «Мирам» мировую известность.) Они, не обладая спасательными функциями, принимали участие в обследовании потерпевших аварии подводных лодок «Комсомолец» и «Курск». И, наконец, с их помощью на дне Северного Ледовитого океана был установлен титановый вымпел с символикой РФ. Два последних сезона батискафы исследуют дно Байкала , погружаясь на глубину до 1600 м. Одной из многочисленных задач, поставленных перед исследователями, является поиск золота руководителя Белого движения Колчака . Однако на настоящий момент на дне обнаружены лишь ящики с патронами времен Гражданской войны.

Новости партнёров

Отличники в школе твердо усвоили: самая высокая точка земли — гора Эверест (8848 м), самая глубокая впадина — Марианская . Однако если про Эверест мы знаем немало интересных фактов, то о впадине в Тихом океане, помимо того, что она самая глубокая, большинству людей ничего не известно.

ПЯТЬ ЧАСОВ ВНИЗ, ТРИ ЧАСА НАВЕРХ

Несмотря на то что океаны к нам ближе, чем горные вершины и уж тем более отдаленные планеты Солнечной системы, люди исследовали всего пять процентов морского дна, которое до сих пор остается одной из величайших загадок нашей планеты.

Шириной в среднем 69 км Марианская впадина образовалась несколько миллионов лет назад вследствие сдвигов тектонических плит и тянется в форме полумесяца на две с половиной тысячи километров вдоль Марианских островов.

Ее глубина, согласно последним исследованиям, составляет 10 994 метра ± 40 метров (для сравнения: экваториальный диаметр Земли равен 12 756 км), давление воды у дна достигает 108,6 МПа — это более чем в 1100 раз больше обычного атмосферного давления!

Марианская впадина, которую еще называют четвертым полюсом Земли, была открыта в 1872 году командой британского исследовательского судна «Челленджер». Экипаж проводил измерения дна в различных точках Тихого океана.

В районе Марианских островов был произведён очередной замер, но километрового каната оказалось недостаточно, и тогда капитан приказал добавить к нему ещё два километровых отрезка. Потом еще и еще...

Почти сто лет спустя эхолот другого английского, но под тем же именем, научного судна зафиксировал в районе Марианской впадины глубину 10 863 метра. После этого самую глубокую точку океанского дна стали называть «Бездной Челленджера».

В 1957 году уже советские исследователи установили наличие жизни на глубинах более 7000 метров, опровергнув тем самым бытовавшее в то вре мя мнение о невозможности жизни на глубинах более 6000—7000 метров, а также уточнили данные англичан, зафиксировав в Марианской впадине глубину в 11 023 метра.

Первое погружение человека на дно впадины состоялось в 1960 году. Его осуществили на батискафе «Триест» американец Дон Уолш и швейцарский океанолог Жак Пикар.

Спуск в бездну занял у них почти пять часов, а подъём — около трёх часов, на дне исследователи пробыли лишь 20 минут. Но и этого времени им хватило для того, чтобы сделать сенсационное открытие — в придонной акватории они обнаружили неизвестных науке плоских рыб размером до 30 см, похожих на камбалу.

ЖИЗНЬ В КРОМЕШНОЙ ТЬМЕ

В ходе дальнейших исследований с помощью беспилотных глубоководных аппаратов выяснилось, что на дне впадины, несмотря на ужасающее давление воды, обитают самые разнообразные виды живых организмов. Гигантские 10-сантиметровые амебы — ксенофиофоры, которых в обычных, земных, условиях можно увидеть только с помощью микроскопа, удивительные двухметровые черви, не менее огромные морские звёзды, осьминоги-мутанты и, естественно, рыбы.

Последние поражают своим ужасающим внешним видом. Их отличительной особенностью является огромная пасть и множество зубов. Многие раздвигают челюсти так широко, что даже небольшой хищник может целиком заглотить животное крупнее себя самого.

Встречаются и вовсе необычные существа, достигающие двухметрового размера с мягким желеобразным телом, аналогов которым в природе не существует.

Казалось бы, на такой глубине температура должна быть на уровне антарктической. Однако в «Бездне Чел-ленджера» находятся гидротермальные источники, называемые «черными курильщиками». Они постоянно нагревают воду и тем самым поддерживают общую температуру во впадине на уровне 1—4 градусов Цельсия.

Обитатели Марианской впадины живут в кромешной тьме, некоторые из них лишены зрения, у других имеются огромные телескопические глаза, улавливающие малейшие блики света. Отдельные особи имеют «фонари» на голове, излучающие разный цвет.

Есть рыбины, в теле которых скапливается светящаяся жидкость. Когда они чувствуют опасность, то выплескивают эту жидкость в сторону неприятеля и прячутся за этим «занавесом света». Внешний вид таких животных весьма непривычен к нашему восприятию, может вызывать омерзение и даже внушать чувство страха.

Но очевидно, что не все загадки Марианской впадины еще разгаданы. В глубинах обитают какие-то диковинные звери поистине невероятных размеров!

ЯЩЕР ПЫТАЛСЯ РАЗГРЫЗТЬ БАТИСКАФ КАК ОРЕХ

Иной раз на берегу, недалеко от Марианской впадины, люди находят тела мертвых 40-метровых чудищ. Также в тех местах были обнаружены гигантские зубы. Ученые доказали, что они принадлежат многотонной доисторической акуле-мегалодону, размах пасти которой достигал двух метров.

Предполагалось, что эти акулы вымерли около трех миллионов лет назад, но найденные зубы гораздо моложе. Так исчезли ли древние монстры на самом деле?

В 2003 году в США были опубликованы очередные сенсационные результаты исследований Марианской впадины. Ученые погрузили в самом глубоком месте мирового океана беспилотную платформу, снабженную прожекторами, чувствительными видеосистемами и микрофонами.

Платформа спускалась на 6 стальных тросах дюймового сечения. Сначала техника не давала никакой необычной информации. Но через несколько часов после погружения на экранах мониторов в свете мощных прожекторов стали мелькать силуэты странных больших объектов (не менее 12—16 метров), а микрофоны в это время передавали на записывающие устройства резкие звуки — скрежет железа и глухие равномерные удары по металлу.

Когда платформу подняли (так и не опустив на дно из-за непонятных помех, препятствовавших спуску), то обнаружилось, что мощные стальные конструкции были погнуты, а стальные тросы как будто подпилены. Еще немного — и платформа навсегда осталась бы «Бездне Челленджера».

Ранее нечто подобное приключилось с немецким аппаратом «Хайфиш». Опустившись на глубину 7 километров, он вдруг отказался всплывать. Чтобы выяснить, в чем неполадка, исследователи включили инфракрасную камеру.

То, что они увидели в последующие несколько секунд, показалось им коллективной галлюцинацией: огромный доисторический ящер, вцепившись зубами в батискаф, пытался разгрызть его как орех.

Опомнившись от шока, ученые привели в действие так называемую электрическую пушку, и чудовище, пораженное мощным разрядом, поспешило ретироваться.

Гигантская 10-сантиметровая амеба— ксенофиофора


КТО ЯВЛЯЕТСЯ НАСТОЯЩИМ «ХОЗЯИНОМ» ПЛАНЕТЫ ЗЕМЛЯ

Но не только фантастические чудовища попадают в поле зрения глубоководных камер. Летом 2012 года беспилотный глубоководный аппарат «Титан», спущенный с научно-исследовательского судна «Рик Месенгер», находился в Марианской впадине на глубине 10 000 метров. Его главной целью было проведение видеосъемки и фотографирование различных подводных объектов.

Вдруг камеры зафиксировали странный множественный блеск материала, очень похожего на металл. А затем в нескольких десятках метрах от аппарата в свете прожектора засветились несколько крупных объектов.

Приблизившись к этим объектам на максимально допустимое расстояние, «Титан» выдал на мониторы ученых, находящихся на «Рике Месенгере» очень необычную картинку. На площадке примерно в квадратный километр находились около 50 крупных цилиндрических предметов, очень похожих на... летающие тарелки!

Через несколько минут после зафиксированного «аэродрома НЛО» «Титан» перестал выходить на связь и так и не всплыл на поверхность.

Существует масса общеизвестных фактов, которые если и не подтверждают возможности существования в морских глубинах разумных существ, то, во всяком случае, вполне объясняют, почему современная наука до сих пор ничего не знает о них.

Во-первых, родная для человека среда обитания — земная твердь — занимает лишь немногим более четверти поверхности суши. Так что нашу планету вполне можно было бы назвать планетой Океан, нежели Земля.

Во-вторых, как всем известно, жизнь зародилась в воде, поэтому морской разум (если он существует) старше человеческого примерно на полтора миллиона лет.

Именно поэтому, по мнению некоторых специалистов, на дне Марианской впадины благодаря наличию активных гидротермальных источников могут существовать не только целые колонии доисторических животных, сохранившихся до наших дней, но и неведомая землянам подводная цивилизация разумных существ! «Четвертый полюс» Земли, на взгляд ученых, — самое подходящее место для их обитания.

И в очередной раз встает вопрос: единственным ли «хозяином» планеты Земля является человек?

«ПОЛЕВЫЕ» ИССЛЕДОВАНИЯ ЗАПЛАНИРОВАНЫ НА ЛЕТО 2015 ГОДА

Третьим человеком, за всю историю исследования Марианской впадины спустившимся на ее дно, стал ровно три года назад Джеймс Кэмерон.

«На земной суше исследовано практически все, — объяснял он свое решение. — В космос начальники предпочитают посылать людей кружиться вокруг Земли, а к других планетам направлять автоматы. Для радостей открытия неизведанного остается одно поле деятельности — океан. Исследовано всего около 3% его водного объема, а что там дальше — неизвестно».

На батискафе DeepSes Challenge, находясь в по лусогнутом состоянии, по скольку внутренний диа метр аппарата не превышав 109 см, известный кинорежиссер наблюдал за всем, что происходит i этом месте, пока механические непо ладки не вынудили его подняться нг поверхность.

Кэмерону удалось взять со дна об разцы пород и живых организмов, а так же провести киносъемку 3D-камерами. Впоследствии эти кадры легли в основу документального фильма.

Однако он так и не увидел ни одного из страшных морских монстров. По его словам, самое дно океана было «лунным... пустым... одиноким», и он чувствовал «полную изоляцию от всего человечества».

Тем временем в лаборатории телекоммуникаций Томского политехнического университета совместно с Институтом проблем морских технологий Дальневосточного отделения РАН полным ходом идёт разработка отечественного аппарата для глубоководных исследований, который сможет опускаться на глубину до 12 километров.

Специалисты, работающие над батискафом, заявляют о том, что аналогов разрабатываемому ими оборудованию в мире нет, а «полевые» исследования образца в водах Тихого океана запланированы уже на лето 2015 года.

Приступил к работе над проектом «Погружение в Марианскую впадину в батискафе» и знаменитый путешественник Федор Конюхов. По его словам, он ставит своей целью не просто коснуться дна глубочайшей впадины Мирового океана, но и провести там целых двое суток, проведя уникальные исследования.

Батискаф создается из расчета на двух человек и будет спроектирован и построен одной из австралийских компаний.

Марианская впадина (или Марианский желоб) – глубочайшее место земной поверхности. Расположено оно на западной окраине Тихого океана в 200 километрах восточнее Марианского архипелага.

Парадоксально, но о тайнах космоса или горных вершин человечество знает гораздо больше, чем об океанских глубинах. И одним из самых загадочных и неисследованных мест нашей планеты является как раз Марианский желоб. Так что же мы знаем о нем?

Марианская впадина – дно мира

В 1875 году команда британского корвета «Челленджер» обнаружила в Тихом океане место, где не было дна. Километр за километром канат лота уходил за борт, но дна не было! И лишь на глубине 8184 метра спуск каната прекратился. Так была открыта самая глубокая подводная щель на Земле. Ее нарекли Марианским желобом, по имени близлежащих островов. Была определена ее форма (в виде полумесяца) и местоположение самого глубокого участка, получившего название «Бездны Челленджера». Он расположен в 340 км южнее острова Гуам и имеет координаты 11°22′ с. ш., 142°35′ в. д.

«Четвертым полюсом», «чревом Геи», «дном мира» называют с тех пор эту глубоководную впадину. Ученые-океанографы долгое время пытались узнать ее истинную глубину. Исследования разных лет давали разные значения. Дело в том, что на такой колоссальной глубине плотность воды повышается по мере приближения ко дну, поэтому и свойства звука от эхолота в ней тоже меняются. Применив вместе с эхолотами барометры и термометры на разных уровнях, в 2011 году было установлено значение глубины в «Бездне Челленджера» 10994 ± 40 метров. Это высота горы Эверест плюс еще два километра сверху.

Давление на дне подводной расселины составляет почти 1100 атмосфер, или 108,6 Мпа. Большинство же глубоководных аппаратов рассчитаны на максимальную глубину в 6-7 тысяч метров. За время, прошедшее с момента открытия глубочайшего каньона, удачно достичь его дна удавалось только четыре раза.

В 1960 году глубоководный батискаф «Триест» впервые в мире спустился на самое дно Марианской впадины в районе «Бездны Челленджера» с двумя пассажирами на борту: лейтенантом ВМС США Доном Уолшем и швейцарским океанографом Жаком Пикаром.

Их наблюдения позволили сделать важный вывод о присутствии жизни на дне каньона. Открытие восходящего тока воды также имело важное экологическое значение: основываясь на нем, ядерные державы отказались от захоронения на дне Марианского провала радиоактивных отходов.

В 90-е годы желоб исследовал японский беспилотный зонд «Kaiko», принесший со дна пробы ила, в которых были обнаружены бактерии, черви, креветки, а также картинки дотоле неведомого мира.

В 2009 году покорил бездну американский робот Nereus, поднявший со дна пробы ила, минералы, образцы глубоководной фауны и фото обитателей неведомых глубин.

В 2012 году в бездну в одиночку совершил погружение Джеймс Кэмерон – автор «Титаника», «Терминатора» и «Аватара». Он провел на дне 6 часов, собирая пробы грунта, минералов, фауны, а также делая фотографии и 3D видеосъемку. На основе этого материала был создан фильм «Вызов бездне».

Удивительные открытия

В желобе на глубине около 4 километров расположен действующий вулкан Дайкоку, извергающий жидкую серу, которая кипит при 187° С в небольшом углублении. Единственное озеро жидкой серы было открыто только на спутнике Юпитера – Ио.

В 2-ух километрах от поверхности клубятся «черные курильщики» – источники геотермальной воды с сероводородом и другими веществами, которые при контакте с холодной водой превращаются в черные сульфиды. Движение сульфидной воды напоминает клубы черного дыма. Температура воды в месте выброса достигает 450° С. Окрестное море не закипает только из-за плотности воды (в 150 раз большей, чем у поверхности).

На севере каньона расположены «белые курильщики» – гейзеры, извергающие жидкий углекислый газ при температуре 70-80° С. Ученые предполагают, что именно в таких геотермальных «котлах» следует искать истоки возникновения жизни на Земле. Горячие источники «подогревают» ледяные воды, поддерживая жизнь в бездне – температура на дне Марианской впадины находится в пределах 1-3° С.

Жизнь за пределами жизни

Казалось бы, что в обстановке полного мрака, безмолвия, ледяного холода и невыносимого давления жизнь во впадине просто немыслима. Но исследования впадины доказывают обратное: почти в 11 километрах под водой есть живые существа!

Дно провала покрыто толстым слоем слизи из органических осадков, опускающихся из верхних слоев океана уже сотни тысяч лет. Слизь является прекрасной питательной средой для баррофильных бактерий, составляющих основу питания простейших и многоклеточных. Бактерии, в свою очередь, становятся пищей для более сложных организмов.

Экосистема подводного каньона поистине уникальна. Живые существа сумели адаптироваться к агрессивной, губительной в нормальных условиях среде, при высоком давлении, отсутствии света, малом количестве кислорода и высокой концентрации токсичных веществ. Жизнь в таких невыносимых условиях придала многим обитателям пучины устрашающий и малопривлекательный вид.

Глубоководные рыбы имеют невероятных размеров пасть, усаженную острыми длинными зубами. Высокое давление сделало их тела небольшими (от 2 до 30 см). Впрочем, встречаются и крупные экземпляры, как например, амеба-ксенофиофора, достигающая 10 см в диаметре. Плащеносная акула и акула-домовой (гоблин), обитающие на глубине 2000 метров, вообще достигают 5-6 метров в длину.

На разных глубинах обитают представители разных видов живых организмов. Чем более глубоководные обитатели бездны, тем лучше у них развиты органы зрения, позволяющие в полном мраке улавливать малейший отблеск света на теле добычи. Некоторые особи и сами способны вырабатывать направленный свет. Иные существа и вовсе лишены органов зрения, их заменяют органы осязания и радиолокации. С увеличением глубины подводные жители все более и более теряют свою окраску, тела многих из них почти прозрачны.

На склонах, где находятся «черные курильщики», живут моллюски, научившиеся нейтрализовать смертельные для них сульфиды и сероводород. И, что пока остается загадкой для ученых, в условиях огромного давления на дне они каким-то чудом ухитряются сохранять целым свой минеральный панцирь. Аналогичные способности проявляют и другие жители Марианской впадины. Изучение образцов фауны показало многократное превышение уровня радиации и токсичных веществ.

К сожалению, глубоководные существа погибают из-за смены давления при любой попытке поднять их на поверхность. Только благодаря современным глубоководным аппаратам стало возможным изучать обитателей впадины в их естественной среде. Уже выявлены представители фауны, не известные науке.

Тайны и загадки «чрева Геи»

Таинственная бездна, как и любое непознанное явление, окутана массой тайн и загадок. Что скрывает она в своих глубинах? Японские ученые утверждали, что, прикармливая акул-гоблинов, они видели акулу 25 метров длиной, пожирающую гоблинов. Чудовищем таких размеров могла быть лишь акула-мегалодон, вымершая почти 2 миллиона лет назад! Подтверждением служат находки зубов мегалодона в окрестностях Марианского желоба, возраст которых датируется всего 11 тысячами лет. Можно предположить, что в глубинах провала еще сохранились экземпляры этих монстров.

Немало ходит рассказов о выброшенных на берег трупах гигантских чудовищ. При спуске в бездну немецкого батискафа «Хайфиш» погружение остановилось в 7 км от поверхности. Чтобы понять причину, пассажиры капсулы включили освещение и пришли в ужас: их батискаф, словно орех, пытался разгрызть какой-то доисторический ящер! Только импульсом электрического тока по внешней обшивке удалось отпугнуть чудовище.

В другой раз при погружении американского глубинного аппарата из-под воды стал доноситься скрежет металла. Спуск был остановлен. При осмотре поднятого оборудования оказалось, что металлический трос из титанового сплава наполовину перепилен (или перегрызен), а балки подводного аппарата погнуты.

В 2012 году видеокамера беспилотного аппарата «Титан» с глубины 10 километров передала картинку объектов из металла, предположительно НЛО. Вскоре связь с аппаратом прервалась.

К сожалению, никаких документальных подтверждений этих интересных фактов не имеется, все они основаны лишь на рассказах очевидцев. У каждой истории есть свои фанаты и скептики, свои аргументы «за» и «против».

Перед рискованным погружением в впадину Джеймс Кэмерон сказал, что хотел своими глазами увидеть хотя бы часть тех тайн Марианской впадины, о которых ходит столько слухов и легенд. Но он не увидел ничего, что выходило бы за грань познаваемого.

Так что же мы знаем о ней?

Чтобы понять, как образовалась Марианская подводная щель, следует вспомнить, что подобные щели (желоба) обычно образуются по краям океанов под действием движущихся литосферных плит. Океанские плиты, как более старые и тяжелые, «подползают» под континентальные, образуя на местах стыков глубокие провалы. Самым глубоким является стык Тихоокеанской и Филлипинской тектонических плит недалеко от Марианских островов (Марианская впадина). Тихоокеанская плита движется со скоростью 3-4 сантиметра в год, в результате чего по обоим ее краям происходит повышенная вулканическая деятельность.

На протяжении всей длины этого глубочайшего провала обнаружено четыре так называемых моста – поперечных горных хребта. Хребты образовались предположительно благодаря движению литосферы и вулканической деятельности.

Желоб в поперечнике имеет V-образную форму, сильно расширяясь кверху и сужаясь книзу. Средняя ширина каньона в верхней части составляет 69 километров, в самой широкой части – до 80 километров. Средняя ширина дна между стенками – 5 километров. Наклон стенок почти отвесный и составляет всего 7-8°. Впадина тянется с севера на юг на 2500 километров. Желоб имеет среднюю глубину около 10 000 метров.

Только три человека на сегодняшний день побывали на самом дне Марианской впадины. В 2018 году планируется еще одно пилотируемое погружение на «дно мира» на самом глубоком его участке. На этот раз покорить впадину и узнать, что скрывает она в своих глубинах, попытаются известный российский путешественник Федор Конюхов и полярный исследователь Артур Чилингаров. В настоящее время ведется изготовление глубоководного батискафа и составляется программа исследования.